A comparative study on CO₂ emissions in door-to-door combined transport

Analysis of the current CO_2 saving potentials in the transport sector

analytical. quantitative. tech.

Door-to-door combined transport has the current potential to save up to 90% of CO_2 emissions compared with transport on the road only

Management Summary

- This study analyses the current potential to save CO₂ emission by transporting goods door-to-door with combined transport instead of using road transport.
- Today, several CO₂ calculators are available to perform comparative studies, e.g., EcoTransIT.
- This study uses existing calculators to determine the possible CO₂ and to establish scenarios that are defined by market-ready technologies (e.g., CO₂ emissions for Euro VI trucks) as well as the current energy mix per country.
- The structure of the study is as follows:
 - **Ten relations** have been selected as calculation examples in accordance with their relevance for transporting goods within the EU.
 - **Two scenarios** have been defined w.r.t. infrastructural and regulatory requirements as well as statistical freight parameters.
 - Eight existing calculators have been used to determine the CO₂ emissions per relation, scenario and transport mode. Their results were used following a specified calculation methodology for the determination and benchmarking of the resulting emission values.
- The study shows that
 - door-to-door combined transport has the potential to save between 63 % and 90 % of the equivalent CO₂ emissions of unimodal road transport for the selected relations in the parametrised transport scenarios and
 - mainly two effects contribute to the CO₂ savings: greater energy efficiency in general and better use of zero-carbon energy.
- The study was conducted by d-fine in close cooperation with UIRR (International Union for Road-Rail Combined Transport s.c.r.l.).
 Financing by UIRR is gratefully acknowledged. In addition, we thank SGKV, transporeon, IVE mbH, and KombiConsult for discussion and contribution to the study as well as the organisations providing the emission calculators.

CO2 EMISSIONS IN DOOR-TO-DOOR CT

01 Scope of the study and general approach

Combined transport allows emission savings compared to road transport – a realistic picture is obtained by updating to modern standards

 Demonstrated advantage of door-to-door CT to pure road transport for 20 analysed relations

PACT⁰¹ programme

 Door-to-door CT was found to reduce CO₂ emissions to 45 % on average for all relations (road-only as 100% reference)

- Energy input mix for electricity production in the EU countries
- New state-of-the-art powertrain technologies for road transport
- Volumes in CT (domestic and international) increased by approx.
 90 % in the period from 2009 to 2019⁰²
- Increased capabilities for the use of long (740m) rail freight trains
- New state-of-the-art terminals allowing electrically powered transhipments of 740m-long electric rail freight trains
- Updated statistical distribution of road leg distances⁰²

Objective of the 2021 Update

- Calculation of CO₂ emissions via the energy consumption for the door-to-door transport by truck compared to road/rail CT
- Use of existing calculators for energy and emissions assessment for global freight transport on road and rail as well as for terminal operations
- Use of current statistical values to achieve comparability for different relevant relations
- Demonstration and comparison of the potential of existing and widely used technologies and infrastructures for road and rail

The objective of this study is to evaluate the carbon footprint and pro rata energy consumption for door-to-door CT using advanced calculators and recent data and contrasting it with the unimodal road alternative.

Assessing the current environmental performance and the potentials of CT compared to road only in door-to-door transport

Updating existing results for cases of practical relevance following a pragmatic approach to create a realistic picture

CO2 EMISSIONS IN DOOR-TO-DOOR CT

$02 \quad \text{Details on the methodology} \\$

Selection of relations, calculation details, and scenario definition

Four consecutive steps including an comprehensive energy and emission assessment for ten relations

Structure of the study

Selection of relations

02 Selection of emission calculators

Calculator	Direct access	Transport
EcoTransIT	Yes	Road, Rail, Ocean, Air
PTV	No	Road
SGKV	No	Road, Rail, Short Sea
carboncare	Yes	Road, Rail, Ocean, Air, Barge
climatecare	Yes	Road, Air, Ocean
DHL	Yes	Air Ocean, Road, Rail
Interreg	Yes	Road, Rail, Ocean, Air, Pipelines
NTMCalc	Basic Yes, Advanced for Members	Road, Rail, Ocean, Air, Custom
GEODIS	Yes	Road, Rail, Air, Ocean, Barge
GHG	Yes	Road, Rail, Air, Ocean, Barge
GreenRouter	No	Road, Rail, Ocean, Air
TK'Blue – GHG calculator	No	Road, Rail, Ocean, Air
Via Green Program (VGP)	No	Road, Rail, Ocean, Air
Kühne+Nagel	Yes	Road, Rail, Ocean
LOG-NET	Yes (not useable)	Road, Rail, Ocean
DB Schenker	Yes	Land, Ocean, Air
BigMile	No	Road, Rail, Ocean, Air
REff Assessment Tool	No	Only logistic sites
ITEC Kombiconsult	No	Only intermodal terminals

04 Energy and emission assessment

- Relevant and representative relations
- Consultation with UIRR members
- Typical start and end points in terminal catchment areas
- Representative distances in terms of statistics

- Inspection of available modes
- Access for data provision
- Methodology and level of detail of parameterization
- Procedure for updating results for most recent country specific energy mixes

- Up-to-date statistics to reflect the actual transport
- Potential of current technologies and infrastructures for road and rail using the best possible conditions
- Parametrisation of vehicles, payload, units, empty runs

- Energy use and emissions for door-to-door road transport and door-to-door CT
- Common metrics and projection to a particular door-to-door CT chain
- Evaluation and comparison for all relations

Relations selected in accordance with their relevance for transporting goods within the EU

The road and rail leg distances of the selected relations represent the length categories that account for significant proportions CT in Europe. Deviations from the actual percentage distribution can be explained by characteristics of the CT market and its development ^{05,07}.

Points of origin and destination as well as road and rail legs for the selected relations

	01 Vienna - Melzo	02 Malmö - Duisburg	03 Rotterdam - Vienna	04 Cologne - Busto	05 Munich - Verona	06 Hamburg - Budapest	07 Valenton - Miramas	08 Dourges - Lyon	09 Ludwigsh Barcelona	10 Venlo - Poznan
Locational Prop	erties									
Start latitude	48,14	56,68	51,95	51,01	48,18	53,51	48,91	50,66	49,44	51,44
Start longitude	16,49	16,28	4,15	6,98	11,56	9,98	2,33	3,00	7,69	5,71
Terminal 1	Vienna South Cargo Center	Malmö KT	Rotterdam RSC	Köln Eiffeltor	München Riem	Hamburg Burchardkai	Valenton	Delta 3 Dourges	Ludwigs- hafen Contargo	Cabooter rail terminal Kal- denkirchen
Terminal 2	Melzo (RCO)	Samskip Mul- timod. Termi- nal Duisburg	WienCont	Busto Arsizio- Gallarate	Verona Interterminal	Budapest Metrans	Miramas	Lyon-St. Priest	Barcelona Morrot	CLIP Contai- ner Terminal Swarzędz
Destination latitude	45,50	51,38	48,18	45,64	45,42	47,42	43,61	45,69	41,37	52,40
Destination longitude	9,41	6,68	16,47	8,84	10,92	19,05	4,99	4,91	2,17	17,12
Distances ⁰⁸										
Road transport	856 km	1166 km	1197 km	832 km	403 km	1241 km	772 km	684 km	1226 km	865 km
CT road leg 1	13 km	278 km	29 km	19 km	14 km	5 km	22 km	33 km	70 km	45 km
CT road leg 2	34 km	27 km	7 km	38 km	2 km	92 km	54 km	25 km	8 km	7 km
CT rail leg	823 km	922 km	1180 km	838 km	441 km	1208 km	709 km	631 km	1342 km	847 km

01

EcoTransIT is a prominent calculator for CO₂ emissions in the transport sector

We selected the emission calculators according to the following criteria.

8 calculators have been selected⁰¹ considering availability, coverage of modes and facilitation of benchmarking, among these EcoTransIT and the SGKV SYSLOG⁰² tool

ىلىلە ا	۰.
13	
13	
13	

Precise parameterization – utilising the available level of detail⁰⁴

Some calculators use vehicle- and weight-, as well as road type- and country-specific parameters for

Calculation methodology – definition of the procedure for determining the results

The results given for **energy use and CO₂ emissions are WTW** values, i.e. upstream processes (WTT) are included for all modes

 CO_2 emissions determined via EcoTransIT are used for road transport and road legs

The energy consumption is calculated using the country-specific rail legs and distance-specific consumption for electric traction from EcoTransIT⁰⁵

Emissions for **rail transport** and electrically powered **transhipments** are derived using **recent values for GHG emission intensity**⁰⁶

Methods for establishing comparability – benchmarking our results using the set of calculators

For calculators using coarse locational settings, road legs are replaced by EcoTransIT⁰⁷

CO₂

Emission values per vehicle are transformed to per tonne using the scenario-specific payload⁰⁸

Emissions per TEU-km are derived for specific cases and their volume capacities⁰⁹ For calculators that do not provide routing, EcoTransIT distances are used as input¹⁰

For calculators only providing TTW emissions, the WTT delta from EcoTransIT is added¹¹

Results for specific ILUs are combined representing their relative statistical share¹²

The "heavy weight scenario" represents the current potential in compliance with the infrastructural and regulatory requirements

03

The "statistical scenario" represents current typical transport by considering recent statistics for the legs in CT as well as for road transport

CO2 EMISSIONS IN DOOR-TO-DOOR CT

$03 \quad \text{Results for the selected relations} \\$

Relation details, energy consumption, CO₂ emissions and saving potential

Relation 1 | Vienna – Melzo Crossing of the Alps followed by the Mediterranean corridor

30

820

Potential of shifting from road to combined transport for one long train

Per average transport | 679 t of freight

CO2 emissions in door-to-door CT © 2021 d-fine

10

transport

Relation 2 | Malmö – Duisburg Freight line from the Scandinavian Baltic coast to the Ruhr area

37 trucks

0,52 kg CO₂/TEU-km

660 G.J

43% -

1 long train

0,18 kg CO₂/TEU-km

379 GJ

47 trucks

930 GJ

Door-to-door CT chain 1 long train - 54% -424 GJ 0,58 kg CO₂/TEU-km 0,15 kg CO₂/TEU-km

25

CO2 emissions in door-to-door CT © 2021 d-fine

Start

Road

transport

transport

04

Relation 3 | Rotterdam – Vienna Freight line from the North Sea port to the hinterland

Potential of shifting from road to combined transport for one long train

Per average transport | 679 t of freight

Relation 4 | Cologne – Busto Freight line along the Rhine and across the Alps

Start	Destination
Cologne	Milano
Chemical industry	Automotive supplier

Distances (rounded to 10 km)

Potential of shifting from road to combined transport for one long train

Per average transport | 679 t of freight

Relation 5 | Munich – Verona The Alpine segment of the Scandinavian-Mediterranean corridor

CO2 emissions in door-to-door CT © 2021 d-fine 04

Relation 6 | Hamburg – Budapest Freight line from the North Sea to the Danube

Potential of shifting from road to combined transport for one long train

Per average transport | 679 t of freight

Relation 7 | Valenton – Miramas

Inner French route from Paris to the Mediterranean Sea

CO2 emissions in door-to-door CT @ 2021 d-fine

04

Relation 8 | Dourges – Lyon Inner French route connecting North and South

Relation 9 | Ludwigshafen – Barcelona Along the Rhine to the Mediterranean coast

1418

1.150

7 t

1 long train

397 GJ

Relation 10 | Venlo – Poznań Along the East-West corridor from the Ruhr area to Poland

All ten relations show significant CO_2 savings in door-to-door CT compared with unimodal end-to-end road transport

Overview of calculation results

Current average door-to-door transport Shifting to CT allows for emission savings of up to 90% in average transport

Transport of max. allowed weight (heavy cargo)

In the case of current best practice transport, CT has the potential to allow emission savings of up to 89%.

Mainly two effects contribute to the CO_2 savings – energy-efficient transport and use of sustainable energy

Further aspects of the evaluation

What are the main reasons for emissions savings?

High savings potential results from

- long rail legs compared to the road distance of the transport chain
- Transport through countries with a high percentage of renewable and nuclear energy production as well as the actual power mix used by rail transport companies

Range of reductions in emission for the particular door-to-door CT chains for the 10 relations compared to 2013 as reference year.

100% emissions per tonne in CT (2013) Changes in the electricity generation mix allowed for CO_2 savings of up to 23% for door-to-door CT in 2020 compared to 2013 for the analysed relations.

A further shift to renewable energy generation can enable additional reductions in the coming years.

Why is the savings potential lower for best practise transport?

Currently unused potentials in road transport may result in savings in the heavy weight case.

Average door-to-door CT performs consistently better compared to the best practice door-to-door road transport.

Door-to-door CT has more potential. The shift to best practice transport can reduce emissions by up to 40%.

CO2 EMISSIONS IN DOOR-TO-DOOR CT

04 Conclusions and outlook

In summary, door-to-door combined transport is able to play a key role in reducing CO_2 emissions in the transport sector already today

Conclusions and Outlook

\rightarrow	Combined transport as a key player	 Overall, ten typical relations of door-to-door transport have been considered, among them domestic and international relations with representative variations in the length of the rail and road leg. Eight different CO₂ emission calculators have been considered in order to create a high level of confidence in the results, e.g. EcoTransIT and the SGKV SYSLOG. For all presented relations and scenarios, a considerable CO₂ saving potential could be determined: Present-day door-to-door combined transport has the ability to save between 63% and 90% of CO₂-emissions for the respective relation compared to unimodal road transport by a Euro VI trucks, while two effects contribute to the CO₂ savings: energy-efficient transport and the use of carbon-free generated electricity.
\rightarrow	A zero carbon future is ahead	 Further improvements in CO₂ emission savings can be expected in door-to-door combined transport over the next years: Sustainable energy from renewable sources will contribute to an improved energy mix, transhipment terminals have already started to establish emission-free operations, e.g., Samskip's Duisburg Terminal, and assuming that electricity comes from renewable sources, battery-electric trucks enable emission-free road legs when performing in a CT transport-chain with typically short road distances. While this study shows a impressive CO₂ emission savings potential of current CT, decarbonized transport offerings are also already underway, e.g.: Some operators begin to offer emission free transport, e.g., Metrans⁰¹, DB Cargo⁰²

01 Website information: METRANS Trains Get 100 % CO2 Free, https://metrans.eu/metrans-trains-get-100-co2-free/ 02 Website information: Products DBeco plus und DBeco neutral, https://www.dbcargo.com/rail-de-de/leistungen/co2-freie-transporte

CO2 EMISSIONS IN DOOR-TO-DOOR CT

Footnotes

01 | Scope of the study and general approach

01 Pilot Actions For Combined Transport

PACT Study Combined Transport CO₂ Reduction p. 62, Final Report, March 2003

- **02** CT volumes (domestic and international): 2009: 6.70 Mio. TEU; 2019: 12.8 Mio. TEU UIC-UIRR 2020 Report on Combined Transport in Europe.
- 03 Heavy weight scenario, assuming that cargo is transported in
 - 45 ft ILUs on articulated flat waggons for rail legs,
 - 44 t trucks (or 60 t for Sweden) as it is allowed for road legs in CT, and
 - 40 t trucks as it is the permissible total weight for international road transport,

with all transport vehicles loaded to their maximum capacity and empty runs for re-distribution of loading units are neglected.

Regulation on maximum authorized weights: Council Directive 96/53/EC of 25 July 1996, laying down for certain road vehicles circulating within the Community the maximum authorized dimensions in national and international traffic and the maximum authorized weights in international traffic, Official Journal L 235, 17/09/1996 P. 0059 – 0075 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31996L0053

04 The evaluation of explicit energy consumption data of specific individual transport operations is beyond the scope of this study. In order to analyse the energy consumption and emissions for the two scenarios for door-to-door road transport and door-to-door CT, we employ existing emission calculators.

05 The calculator provided by EcoTransIT is conformal with the framework provided by the Global Logistics Emissions Council (GLEC). https://www.smartfreightcentre.org/en/how-to-implement-items/what-is-glec-framework/58/ https://www.ecotransit.org/de/

06 https://sgkv.de/portfolio/kv-tools/syslog/

- 07 Determination of emissions from electric energy consumption based on the electricity consumption as calculated by EcoTransIT and the most recent data on the greenhouse gas emission intensity of electricity generation from EEA *European Environment Agency, Greenhouse gas emission intensity of electricity generation (Created 29 Jul 2021. Published 25 Oct 2021, Last modified 25 Oct 2021) https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9*
- 08 Emissions per TEU-kilometre are also indicated for reporting purposes. The vehicle capacities were used to determine the volumes transported. This results in different values for the volume utilisation in tonnes per TEU for the different legs. The emissions per TEU-kilometre are calculated as the sum of the individual legs.

- 01 The relations were selected in cooperation with the UIRR member companies in order to represent relevant relations in Europe. With more than 40 UIRR member companies from 17 European countries, the market of intermodal transport can be adequately represented. (2020-21 UIRR Report, European Road-Rail Combined Transport). Freight volumes of the connected corridors are reported in UIC-UIRR 2020 Report on Combined Transport in Europe, UIC freight department, 11/2020.
- 02 Transport volumes for 2020 are used as an indicator of demand (UIC-UIRR 2020 Report on Combined Transport in Europe, UIC freight department, 11/2020).
- 03 Trans-European Transport Network (TEN-T)

<u>https://ec.europa.eu/transport/themes/infrastructure/ten-t_en</u> (accessed: 17.10.2021) and Regulation (EU) No 1315/2013 of the European Parliament and of the Council of 11 December 2013 on Union guidelines for the development of the trans-European transport network and repealing Decision No 661/2010/EU

04 The start and end points of the transport routes were selected in industrial and commercial areas in the respective catchment area of the start and end terminals in such a way that typical transport routes are created and at the same time the statistical distribution of road leg distances in CT is represented. The international relations cover the single road leg length classes <50 km, 50-150 km, and 150-300 km, which cover 74% of road leg distances of door-to-door CT in Europe. The domestic relations belong to the length classes <50 km and 50-150 km, representing 58% of door-to-door CT in Europe. Statistical distribution for single road legs: International door-to-door CT: <50 km: 42%, 50-150 km: 23%, 150-300 km: 9%, >300 km: 26%; Domestic door-to-door CT: <50 km: 20%, 50-150 km: 38%, 150-300 km: 16%, >300 km: 26%; Source: UIC-UIRR 2020 Report on Combined Transport in Europe, UIC freight department, 11/2020

- 05 The selected relations do not reflect the statistical distribution of single road legs exactly, but shorter road legs are overrepresented. This can be justified by the fact that longer road legs are mainly due to the use of company trains, which are out of the scope of this study. (Contract No FV355/2012/MOVE/D1/ETU/SI2.659386, Analysis of the EU Combined, Transport Final Report)
- 06 In the selection of the relations, it was ensured to cover different length classes of the rail legs to represent the typical rail distances in door-to-door CT in Europe. The international relations cover the rail leg length classes <600 km, 600-900 km, 900-1200 km, and >1200 km, which cover all typical rail length distances in European door-to-door CT. The domestic relations belong to the length class 600-900 km, representing 13% of door-to-door CT in Europe. Statistical distribution of total rail legs: International door-to-door CT: <600 km: 45%, 600-900 km: 19%, 900-1200 km: 21%, >1200 km: 14%; Domestic door-to-door CT: <300 km: 28%, 300-600 km: 56%, 600-900 km: 13%, 900-1200 km: 3%, >1200 km: 1%; Source: UIC-UIRR 2020 Report on Combined Transport in Europe, UIC freight department, 11/2020
- 07 The selected relations do not reflect the statistical distribution of rail legs exactly, but the longer rail legs are overrepresented. This can be justified by the fact that door-to-door CT is gradually losing competitiveness on the shorter routes compared to road transport. (*Contract No FV355/2012/MOVE/D1/ETU/SI2.659386, Analysis of the EU Combined, Transport Final Report*)

08 Distances are determined based on the emission calculators. The table shows the values of the EcoTransIT calculator.

- 02
- 01 See the Appendix for a full list of all calculators evaluated in the scope of this study. Criteria such as free availability and coverage of the relevant transport modes were decisive for the selection whereby care was also taken to use calculators that were independent of EcoTransIT if possible for comparison.
- 02 We thank IVE mbH and SGKV for supporting the study by swiftly providing the calculations for the selected relations.
- **03** CSN EN 16258 Methodology for calculation and declaration of energy consumption and GHG emissions of transport services (freight and passengers), released 2012
- 04 Further information on the level of detail for the specific calculator is provided in the Appendix or in the respective methodology of the calculator. Links are provided in the Appendix.
- 05 It can happen that the intrinsic EcoTransIT routing integrates short sections with diesel traction into the rail legs for some relations. As we assume completely electrified traction for rail transport, the following adjustments have been applied to the energy values of EcoTransIT. Based on several electric-only rail sections per country, the energy consumption per kilometre was determined for both scenarios ("heavy weight" and "statistical") for every country. Using these factors, the TTW energy consumption for electric traction was calculated on the basis of the rail leg distances per country. WTW energy consumption for rail legs and electrically powered transhipment is derived using the upstream energy factors for 2017 provided in the 2020 methodology of EcoTransIT (their Table 53) following equation 4.3.4 in the EcoTransIT methodology.

EcoTransIT World, Environmental Methodology and Data Update 2020, EcoTransIT World Initiative

06 The online version of the EcoTransIT calculator uses the GHG emission intensity factors for the year 2013 according to Table 52 of the Methodology Update 2019. In order to obtain values that are as recent as possible, emission values were calculated according to the formulas in chapter 3.4.3 of the methodology using the more recent emission intensity factors for 2017 from the methodology update for 2020. As changes in emission factors of up to 30% (e.g. for Spain) have occurred for the countries of the respective relations between the years 2017 and 2020 (s. EEA), the calculated emissions for 2017 were propagated to 2020 using the ratios of the factors given by the EEA and the Federal Office for the Environment of Switzerland. 2019 was selected because this represents the most recent year with reported values. This procedure assumes that the upstream energy factors have not changed over the 2-year period.

EcoTransIT World, Environmental Methodology and Data Update 2019, EcoTransIT World Initiative

EcoTransIT World, Environmental Methodology and Data Update 2020, EcoTransIT World Initiative

European Environment Agency (EEA), Greenhouse gas emission intensity of electricity generation <u>https://www.eea.europa.eu/data-and-maps/daviz/co2-</u> <u>emission-intensity-9</u> (accessed: 02.11.2021)

Kenngrössen zur Entwicklung der Treibhausgasemissionen in der Schweiz 1990–2019, Aktualisiert im April 2021, Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt für Umwelt BAFU, Abteilung Klima

02 | Step 02 – Selection of emission calculators (2/2)

- 07 The exact calculation for the shorter distances of the road legs is not possible with calculators not allowing a location selection on address or coordinate level but only on city (district) level. This would result in large relative errors. For these calculators, the emissions for the door-to-door CT chain were determined by adding the EcoTransIT values for road legs and transhipment to the rail leg.
- **08** For the calculators that determine emission values per vehicle, the values per tonne of freight transported are determined by dividing the vehicle emission value by the scenario-specific weight of the payload. In case the parametrisation of a 44t truck was not possible within the calculator for the CT road legs in the heavy scenario, a 40t truck was used and the lower payload of the 40 t truck was also considered for the "heavy weight" scenario for the emission calculation per tonne.
- 09 Emissions per TEU-km cannot be determined directly, as there is no constraint regarding a constant volume. For both scenarios, a distance-weighted average is determined for door-to-door CT based on the calculation for one door-to-door CT chain and the volume capacities of the required vehicles for the legs. The values for road transport are also derived from the volume capacity of the vehicles used.
- 10 Some calculators depend on the input of distances (e.g. ClimateCare, Interreg), in this case the values of EcoTransIT rounded to the nearest kilometre were used as input.
- 11 Some calculators only report TTW emissions for road transport (e.g. Interreg). In this case, a delta for emissions from upstream processes was determined using the EcoTransIT WTW and TTW values, which was added to the calculated emissions of the respective calculator.
- 12 The SGKV SYSLOG calculator requires the selection of a specific ILU type. Since the SYSLOG tool assumes a default average load factor, this tool is used for benchmarking in the "statistical" scenario. To represent the statistical share of ILUs defined for this scenario, we performed the calculation for 40 ft containers which is identical also for semi-trailers and for 20 ft containers which is identical also for swap bodies. These two results were combined in the following way: Using the average volume of 1.53 TEU per container and swap body (derivation s. footnote 21 chapter "scenario definition and methodology"), this translates into 47% 20 ft containers and 53% 40 ft containers. Containers comprise 87% of ILUs in CT, semi-trailers make up the remaining 13% (derivation s. footnote 19 chapter "scenario definition and methodology"). Hence, the combination of results is calculated for 41% of 20 ft containers and 59 % of 40 ft containers.

01 The authorized maximum weight for road trains or articulated vehicles is 40 t for transport in Europe and 44 t for articulated vehicles carrying one or more containers or swap bodies, up to a total maximum length of 45 feet in intermodal transport operations.

Council Directive 96/53/EC of 25 July 1996 as amended by Directive 2015/719 laying down for certain road vehicles circulating within the Community the maximum authorized dimensions in national and international traffic and the maximum authorized weights in international traffic, Official Journal L 235, 17/09/1996 p. 59 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01996L0053-20190814

- 02 The calculation is performed for a fully loaded 40 t truck, wherever the calculator allows for the selection. For the EcoTransIT calculator, the parametrisation is: vehicle type 26-40 t (intrinsic parameters: empty weight = 14 t; payload capacity = 26 t; vessel capacity = 2 TEU; maximum total weight = 40 t; Source: EcoTransIT World, Environmental Methodology and Data Update 2019, EcoTransIT World Initiative); load factor = 100%. Using the vehicle parameters, the further parameters translate into: payload = 26 t; TEU load = 2 TEU; freight weight per TEU = 13 t/TEU
- **03** For Sweden, the allowed maximum gross combination weight for articulated vehicles is higher (64 t since 2016, formerly 60 t). Legal loading: Weight and dimension regulations for heavy vehicles, Swedish transport agency https://www.transportstyrelsen.se/globalassets/global/publikationer/vag/yrkestrafik/lasta-lagligt/tran045-lasta-lagligt-eng-low.pdf
- 04 The calculation is performed for a fully loaded 44 t truck or a 60 t truck for Sweden, respectively, wherever the calculator allows for the selection. Parametrisation for a 44t truck for the EcoTransIT calculator: the weight of 44 t indicates the vehicle type 44-60 t. With its intrinsic parameters 44-60 t (empty weight = 19 t; payload capacity = 41 t; vessel capacity = 2 TEU; maximum total weight = 60 t; *Source: EcoTransIT World, Environmental Methodology and Data Update 2019, EcoTransIT World Initiative*), the payload for the 44 t total weight case is 44 t - 19 t = 25 t, which is one tonne less than for a fully loaded 40 t truck. In order to reflect the potential of using 44 t trucks and at the same time take into account a possibly higher empty weight, we map the payload-to-empty-weight ratio of the new vehicle class 40-50t truck (empty weight = 15 t; payload capacity = 35 t; vessel capacity = 2 TEU; maximum total weight = 50 t; *Source: EcoTransIT World, Environmental Methodology and Data Update 2020, EcoTransIT World Initiative*), which was introduced with the 2020 update but does not seem to be available in the online version, to the existing vehicle type 44-60 t truck. For the 44 t case, we get a payload to empty weight ratio of 29 t / 15 t for the 40-50 t truck type. To reflect the same ratio, the 44-60 t truck would need to be loaded with 36.73 t payload. This results in a load factor of 36.73 t / 41 t = 90%, which is used for the calculation. Parametrisation for a 60 t truck for the EcoTransIT calculator: vehicle type 44-60 t (intrinsic parameters: empty weight = 19 t; payload capacity = 41 t; vessel capacity = 2 TEU; maximum total weight = 60 t; *Source: EcoTransIT World, Environmental Methodology and Data* Update 2019, *EcoTransIT calculator*: vehicle type 44-60 t (intrinsic parameters: empty weight = 19 t; payload capacity = 41 t; vessel capacity = 2 TEU; maximum total weight = 60 t; *Source: EcoTransIT World, Environmental Methodology and Data* Update 2019, *EcoTransIT World Initiative*); load

05 The transport is assumed to be conducted by diesel trucks compliant with the Euro VI emission standard.

Wherever the calculator allows for parametrisation of the fuel type and emission standard of the selected vehicle, diesel and Euro VI is chosen.

06 Wherever the calculator allows for parametrisation of empty trips related to the transport, the empty trip factor is chosen to be 0.

07 The standard length of freight trains required by the TEN-T regulation is 740 m.

Regulation (EU) No 1315/2013 of the European Parliament and of the Council of 11 December 2013 on Union guidelines for the development of the trans-European transport network and repealing Decision No 661/2010/EU Text with EEA relevance https://eur-lex.europa.eu/legal-content/DE/ALL/?uri=celex:32013R1315 This length is feasible in many European countries; some countries, which the selected relations pass through, would even allow for longer train lengths or are testing them in pilot projects.

Longer trains Facts & Experiences in Europe, Results of the CER working group on longer and heavier trains, Community of European Railway and Infrastructure Companies, 2016 <u>https://cer.be/sites/default/files/publication/160525_Longer%20Trains_Facts%20and%20Experiences%20in%20Europe_final_0.pdf</u>

08 The standard total weight of a 740 m long freight train is 2000 t.

UIRR Position Paper, Guidelines revision: key to a competitive infrastructure, 19. April 2021, <u>https://www.uirr.com/en/media-centre/press-releases-and-position-papers/2021/mediacentre/1830-position-paper-ten-t-guidelines-revision-key-to-a-competitive-infrastructure.html</u>

09 With a typical length of 20 m for a freight locomotive, we adopt a load length of 720 m.

For the heavy weight scenario, we adopt a mass of 1910 t for wagons and load, assuming a typical weight of 90 t for a typical freight locomotive.

Typical lengths and total weights of electric freight locomotives are e.g. 18.98 m and max. 90 t for the Siemens Vectron (Siemens Mobility, Vectron. Die Lok, die neue Wege schafft, https://assets.new.siemens.com/siemens/assets/api/uuid:187443e1-48ca-449e-9542-31b8c449f454/mo-vectron-technikbroschuere-de.pdf) and 18.90 m and 84 t for the Bombardier Traxx Series (https://www.alphatrains.eu/downloads/fleet/loco/alpha_data_sheet_loco_traxx_br186.pdf)

10 The transport is assumed to be conducted by electric locomotives. Wherever the calculator allows for parametrisation of the traction, electrified is chosen.

11 We adopt an efficient intermodal wagon (90 ft/6-axle, Sggmrss, Technical data: No of axles = 6; max. permissible axle load = 22.5 t; tara = 29.5 t; payload = 105.5 t; total length = 29.59 m; loading length = 27.64 m)

COSMOS Project, Good Practice Manual, 2013, KombiConsult GmbH, <u>http://www.intermodal-cosmos.eu/content/e4/e251/e259/e270/COSMOS_WP1_Good-Practice-</u> Manual_12_Efficient-Intermodal-Wagons_KC-HC_20130430_eng.pdf

With a total length of 29.59 m per wagon, 24 wagons can be joined to form a train of a length of 710.16 m. Considering the tare weight of 29.5 t per wagon, the loading weight of the freight train is determined to 1202 t or 50.08 t per wagon which is well below the maximum permissible payload of 105.5 t and corresponds to a load factor of 47.5% for the wagon.

12 We assume that each wagon carries two 45 ft PW containers: length = 13.76 m; tara = 4.8 t; payload = 25.68 t

ISO 668:2013-08, Series 1 freight containers - Classification, dimensions and ratings

This results in a total weight of 25.04 t per container or a payload of 25.04 t - 4.8 t = 20.24 t per container resulting in 7.53 t/TEU. This payload is well below the maximum permissible payload of 25.68 t for a 45 ft PW container and corresponds to a load factor of 78.8 % for each container. For the calculation, the parametrisation of the calculator is chosen to reflect the parameters derived above in the closest possible way.

For the EcoTransIT calculator, the parametrisation is: train type = extra large train (2000t); train weight = 1910 t; load factor = 64 %. The load factor is calculated as the ratio of payload and payload capacity of the wagon. The values for the EcoTransIT standard wagon (empty weight = 23 t; payload capacity = 61 t) do not correspond to the values of the good practice wagon assumed in this study.¹¹ To reflect the load-to-wagon-weight ratio of 50.08 t / 29.5 t as for the parameters of this study, the EcoTransIT standard wagon would need to be loaded with 39.05 t. The ratio of this value and the payload capacity of the standard wagon is 64 %, which is the load factor to be used for the calculation.

13 Within the scope of the study, it is not possible to consider the emissions for the specific terminals on the basis of real consumption values. Furthermore, no terminal-specific calculations as they would be possible with the help of a custom parametrised ITEC calculation tool are carried out. EcoTransIT reports transhipment-related energy consumption and emissions. Based on the composition, it can be concluded that electrically powered transhipments are assumed. However, some terminals may use diesel technology. For the EcoTransIT calculator, the parametrisation is: handling = "other"

14 For the EU, an average maximum permissible laden weight for vehicles in road freight transport of 29.74 t is obtained based Eurostat data for 2019. Eurostat, Annual road freight transport by maximum permissible laden weight of vehicle (Mio Tkm, Mio Veh-km, 1 000 Jrnys), online data code: ROAD_GO_TA_MPLW, last update: 05/10/2021 23:00 <u>https://ec.europa.eu/eurostat/databrowser/product/page/ROAD_GO_TA_MPLW</u>; own calculations For the emission assessment, the parametrisation of the calculator is chosen to reflect the vehicle type in the closest possible way, allowing the weight to be considered for routing, energy and emission calculations (if applicable). EcoTransIT parametrisation: vehicle type 26-40t (intrinsic parameters: empty weight = 14 t; payload capacity = 26 t; vessel capacity = 2 TEU; maximum total weight

= 40 t; Source: EcoTransIT World, Environmental Methodology and Data Update 2019, EcoTransIT World Initiative).

15 In 2019, the average freight weight per vehicle in road freight transport for load trips (loading status: loaded) in the EU was 14.33 t. Summary of annual road freight transport by type of operation and type of transport (1 000 t, Mio Tkm, Mio Veh-km), online data code: ROAD_GO_TA_TOTT, last update: 29/09/2021 23:00 <u>https://ec.europa.eu/eurostat/databrowser/product/page/ROAD_GO_TA_TOTT</u>; own calculations If possible, this value is taken into account my means of the load factor (payload / payload capacity) in the parameterization of the calculators. For the EcoTransIT calculator, the parametrisation is: load factor = 14.33t / 26t = 55%

02 | Step 03 – Scenario definition and methodology (4/6)

16 Empty runs are considered reflecting the relation of vehicle kilometres running empty (loading status: empty) and loaded in road freight transport. For the EU, the value for 2019 is 24.82%.

Summary of annual road freight transport by type of operation and type of transport (1 000 t, Mio Tkm, Mio Veh-km), online data code: ROAD_GO_TA_TOTT, last update: 29/09/2021 23:00 <u>https://ec.europa.eu/eurostat/databrowser/product/page/ROAD_GO_TA_TOTT</u>; own calculations

Also for rail legs in CT, empty runs are considered using this average empty trip factor of 24.82% for road freight transport in general, since the Eurostat dataset for road freight transport that allows for differentiation by cargo types (i.e. large containers and swap bodies and other containers) does not provide separate reporting of empty runs.

Annual road freight transport by type of cargo and distance class (1 000 t, Mio tkm, Mio Veh-km, 1 000 BTO), online data code: ROAD_GO_TA_TCRG, last update: 09/10/2021 23:00 https://ec.europa.eu/eurostat/databrowser/view/ROAD_GO_TA_TCRG/;

Wherever the calculator allows for parametrisation of empty trips related to the transport, the empty trip factor is chosen to be 25%.

17 A representative emission class is to be adopted. Statistics on the number of trucks by environmental characteristics are available for Germany published by the German Federal Motor Transport Authority (Kraftfahrbundesamt). As of 1.1.2021, more than half of the registered trucks over 12 t in Germany had emission class Euro VI.

Fahrzeugzulassungen (FZ) – Bestand an Kraftfahrzeugen nach Umwelt-Merkmalen, FZ 13, 1. Januar 2021, Kraftfahrbundesamt

Wherever the calculator allows for parametrisation of the fuel type and emission standard of the selected vehicle, diesel and Euro VI is chosen.

- 18 The load factor for the road legs is determined from the average weight of goods of 15.85 t per ILU for rail freight traffic in ILUs (derivation see footnote 21). Depending on the configuration options, this value is used to determine the load factor for the parametrisation of the calculators. For the EcoTransIT calculator, the parametrisation is: load factor = 15.85t / 26t = 61%.
- 19 According to European statistics on rail freight transport in intermodal loading units (ILUs), in 2019, the shares of ILUs in terms of number were: 85.8% containers and swap bodies, 12.7% semi-trailers (unaccompanied), 1.5% accompanied road-vehicles. The latter are neglected in the following due to their low share and a relative share of 87% containers and swap bodies and 13% semi-trailers is adopted.

Empty and loaded intermodal transport units, online data code: RAIL_GO_ITU last update: 21/09/2021 23:00 <u>https://ec.europa.eu/eurostat/databrowser/view/RAIL_GO_ITU</u>, own calculations Volume of containers transported, online data code: RAIL_GO_CONTNBR, last update: 21/09/2021 23:00 <u>https://ec.europa.eu/eurostat/databrowser/view/RAIL_GO_CONTNBR</u>; own calculations

20 The Eurostat datasets for rail freight transport in ILUs do not report on tonne- and vehicle-kilometres, for transport using the different ILUs with the distinction of loaded and empty runs. Thus, the empty trip factor is calculated as fraction of empty and loaded ILUs by number. For 2019, the empty trip factor for the current EU member states with available data was: 35.4% for containers and swap bodies and 8.4% for semi-trailers (unaccompanied). Using the shares of the different types of ILUs determined above, the total number-weighted factor is 31.1%. Empty and loaded intermodal transport units, online data code: RAIL_GO_ITU last update: 21/09/2021 23:00 https://ec.europa.eu/eurostat/databrowser/view/RAIL_GO_CONTNBR, last update: 21/09/2021 23:00 https://ec.europa.eu/eurostat/databrowser/view/RAIL_GO_CONTNBR, last update: 21/09/2021 23:00 https://ec.europa.eu/eurostat/databrowser/view/RAIL_GO_CONTNBR, last update: 21/09/2021 23:00 https://ec.europa.eu/eurostat/databrowser/view/RAIL_GO_CONTNBR, last update: 21/09/2021 23:00 https://ec.europa.eu/eurostat/databrowser/view/RAIL_GO_CONTNBR, own calculations Goods transported in intermodal transport units, online data code: RAIL_GO_CONTWGT, last update: 21/09/2021 23:00

https://ec.europa.eu/eurostat/databrowser/view/RAIL_GO_CONTWGT; own calculations

Wherever the calculator allows for parametrisation of empty trips related to the transport, the empty trip factor is chosen to be 31%.

21 For the calculation of the payload per ILU and the gross weights (ILU + goods), we rely on the values of the Federal Statistical Office for Germany for rail freight transport in ILUs, since they report the weight of goods and empty ILUs individually in addition to the gross weight, which is also available via Eurostat. For 2018, the average gross weight (goods, packaging, containers and loading equipment) on load trips was 18.27 t for containers and swap bodies and 26.68 t for semi-trailers. The payload (goods and packaging without containers and loading equipment) amounted to 15.13 t for containers and swap bodies and 20.68 t for semi-trailers. Using the share of ILUs by number determined above, the average gross weight was 14.96 t for containers and swap bodies and 24.63 t for semi-trailers and swap bodies, this translates to 9.21 t/TEU. The payload amounted to 11.38 t for containers and swap bodies and 18.78 t for semi-trailers. For containers and swap bodies, this translates to 7.00 t/TEU. Further parameters derived from the German dataset for 2018 are an average volume of 1.53 TEU per container and swap bodies, the average gross weight of freight of 9.15 t/TEU for containers and swap bodies for load trips. For containers and swap bodies, the average gross weight on load trips was 11.05 t/TEU and the average gross weight (containers and swap bodies for load trips. For containers and swap bodies, the average gross weight on load trips was 11.05 t/TEU and the average gross weight (containers and loading equipment) on empty runs was 3.17 t/TEU. For semi-trailers, the average gross weight (ILU and loading equipment) on empty runs was 4.44 t.

Verkehr - kombinierter Verkehr, Fachserie 8 Reihe 1.3, Statistisches Bundesamt (Destatis), 03.Feb.2021; <u>https://www.destatis.de/DE/Themen/Branchen-</u> <u>Unternehmen/Transport-Verkehr/Publikationen/Downloads-Querschnitt/kombinierter-verkehr-</u>

2080130187004.pdf;jsessionid=DC28EE5E870945E6A4201EF0320925AA.live731?__blob=publicationFile; own calculations

46131-0017: Beförderte Güter, Beförderungsleistung, Ladeeinheiten, Container (Eisenbahngüterverkehr): Deutschland, Jahre, Hauptverkehrsbeziehungen, Art der Ladeeinheit, Ladezustand, <u>https://www-genesis.destatis.de/genesis//online?operation=table&code=46131-0017</u>; own calculations

22 Regarding the wagons used for container and semi-trailer transport, we rely on the type specific values for empty weight, payload capacity, vessel capacity and maximum total weight for container and truck wagons derived within the 2020 update of the EcoTransIT methodology from transport statistics from railway companies.

Container wagon: empty weight = 21 t; payload capacity = 65 t; vessel capacity = 2.6 TEU; maximum total weight = 86 t;

Rolling Road - Trailer wagon: empty weight = 34.3 t; payload capacity = 100 t; vessel capacity = 4 TEU; maximum total weight = 134.3 t.

Source: EcoTransIT World, Environmental Methodology and Data Update 2020, EcoTransIT World Initiative

We assume a the length for the wagons according to the parameters for common wagons of 20 m for the container wagon and 34 m for the trailer wagon, which can carry two semi-trailers.

COSMOS Project, Good Practice Manual, 2013, KombiConsult GmbH, <u>http://www.intermodal-cosmos.eu/content/e4/e251/e259/e270/COSMOS_WP1_Good-Practice-Manual_12_Efficient-Intermodal-Wagons_KC-HC_20130430_eng.pdf</u>

23 To reflect the share of ILU and compose a train of up to a maximum load length of 720m, we assume a train composed of 27 container wagons and 5 trailer wagons with at total length of 710 m. The wagons are assumed to be loaded with ILUs reflecting the statistical average total weight derived above of 9.21 t/TEU for containers and swap bodies and 24.63 t for semi-trailers. This sums up to a train weight of 1631 t. Detailed Calculation: Total train weight (without locomotive): 27 wagons * (21 t + 2.6 TEU * 9.21 t/TEU) + 5 wagons * (34.3 t + 2 Trailer * 24.63 t / Trailer) = 1631 t; Total train weight (with locomotive): 1631 t + 90 t locomotive = 1720 t; Weight of wagons: 27 wagons * (21 t + 5 wagons * 34.3 t = 738.5 t; Load weight = 27 wagons * (2.6 TEU * 9.21 t/TEU) + 5 wagons * (2 Trailer * 24.63 t / Trailer) = 892.5 t; Freight weight = 27 wagons * (2.6 TEU * 7.00 t/TEU) + 5 wagons * (2 Trailer * 18.78 t/Trailer) = 679.2 t; For the calculation, the parametrisation is chosen to reflect the parameters derived above in the closest possible way. For the EcoTransIT calculator, the

parametrisation is: train type = extra large train (2000t); train weight = 1631 t; load factor = 46 %. The load factor is calculated as the ratio of payload and payload capacity of the wagon. The values for the intrinsic standard wagon (empty weight = 23 t; payload capacity = 61 t) do not correspond to the values of the type specific wagons assumed in this study. To reflect the load / wagon weight ratio of 892.5 t / 738.5 t as for the parameters of this study, the EcoTransIT intrinsic standard wagon would need to be loaded with 27.80 t. The ratio of this value and the payload capacity of the standard wagon is 46 %, which is the load factor to be used for the calculation.

Contact

d-fine GmbH An der Hauptwache 7 D-60313 Frankfurt/Main Germany info@d-fine.de

UIRR s.c.r.l. 31, rue Montoyer - bte 11

B-1000 Brussels Belgium headoffice.brussels@uirr.com

Berlin

d-fine GmbH Friedrichstraße 68 D-10117 Berlin Deutschland info@d-fine.de

Düsseldorf

d-fine GmbH Dreischeibenhaus D-40221 Düsseldorf Deutschland info@d-fine.de

Frankfurt

d-fine GmbH An der Hauptwache 7 D-60313 Frankfurt/Main Deutschland info@d-fine.de

Hamburg d-fine GmbH

Rödingsmarkt 9 D-20459 Hamburg Deutschland info@d-fine.de

London

d-fine Ltd 6-7 Queen Street London, EC4N 1SP United Kingdom info@d-fine.co.uk

München

d-fine GmbH Bavariafilmplatz 8 D-82031 Grünwald Deutschland info@d-fine.de

Wien

d-fine Austria GmbH Riemergasse 14 Top 12 A-1010 Wien Österreich info@d-fine.at

Zürich

d-fine AG Brandschenkestrasse 150 CH-8002 Zürich Schweiz info@d-fine.ch

dfine

analytical. quantitative. tech.